Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Physiol Biochem ; 207: 108362, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38266561

RESUMEN

Nodule symbiosis is an energetic process that demands a tremendous carbon (C) cost, which massively increases in responses to environmental stresses. Notably, most common respiratory pathways (e.g., glycolysis and Krebs cycle) that sustain nitrogenase activity and subsequent nitrogen (N) assimilation (amino acid formation) display a noncyclic mode of C flux. In such circumstances, the nodule's energy charge could markedly decrease, leading to a lower symbiotic activity under stresses. The host plant then attempts to induce alternative robust metabolic pathways to minimize the C expenditure and compensate for the loss in respiratory substrates. GABA (γ-aminobutyric acid) shunt appears to be among the highly conserved metabolic bypass induced in responses to stresses. Thus, it can be suggested that GABA, via its primary biosynthetic pathway (GABA shunt), is simultaneously induced to circumvent stress-susceptible decarboxylating portion of the Krebs cycle and to replenish symbiosome with energy and C skeletons for enhancing nitrogenase activity and N assimilation besides the additional C costs expended in the metabolic stress acclimations (e.g., biosynthesis of secondary metabolites and excretion of anions). The GABA-mediated C/N balance is strongly associated with interrelated processes, including pH regulation, oxygen (O2) protection, osmoregulation, cellular redox control, and N storage. Furthermore, it has been anticipated that GABA could be implicated in other functions beyond its metabolic role (i.e., signaling and transport). GABA helps plants possess remarkable metabolic plasticity, which might thus assist nodules in attenuating stressful events.


Asunto(s)
Fabaceae , Fabaceae/metabolismo , Simbiosis/fisiología , Nitrógeno/metabolismo , Carbono/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Verduras , Plantas/metabolismo , Homeostasis , Nitrogenasa/metabolismo , Fijación del Nitrógeno/fisiología , Nódulos de las Raíces de las Plantas
2.
Plants (Basel) ; 12(22)2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-38005785

RESUMEN

Phosphorus (P) is a major limiting factor for legume and symbiotic nitrogen fixation (SNF). Although overall adaptations of legumes to P supplementation have been extensively studied in connection with inorganic P, little information is currently available regarding nodulation or SNF responses to organic P (Po) in hydroponics. We investigated the mineral and carbon metabolism of Po-induced nodules of two contrasting faba bean varieties grown hydroponically under inorganic P (Pi), viz., in P-deficient (2 µM KH2PO4, -Pi), sufficient-P (200 µM KH2PO4, +Pi), and phytic acid (200 µM, Po) conditions, and were inoculated with Rhizobium leguminosarum bv. viciae 3841 and grown for 30 days. The results consistently reveal similar growth and biomass partitioning patterns between +Pi and Po, with both varying substantially from -Pi. In comparison, +Pi and Po observed equivalent accumulations of overall elemental P concentrations, with both increasing by 114 and 119%, respectively, relative to -Pi. A principal component analysis on metabolites showed a clear separation of the -Pi treatment from the others, with +Pi and Po correlating closely together, highlighting the nonsignificant differences between them. Additionally, the δ15N abundance of shoots, roots, and nodules was not significantly different between treatments and varieties and exhibited negative δ15N signatures for all tissues. Our study provides a novel perspective on mineral and carbon metabolism and their regulation of the growth, functioning, and reprogramming of nodules upon phytate supply.

3.
Plant Cell Physiol ; 63(12): 1914-1926, 2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-35880749

RESUMEN

In this study, we investigated the potential role of the karrikin receptor KARRIKIN INSENSITIVE2 (KAI2) in the response of Arabidopsis seedlings to high-temperature stress. We performed phenotypic, physiological and transcriptome analyses of Arabidopsis kai2 mutants and wild-type (WT) plants under control (kai2_C and WT_C, respectively) and 6- and 24-h heat stress conditions (kai2_H6, kai2_H24, WT_H6 and WT_H24, respectively) to understand the basis for KAI2-regulated heat stress tolerance. We discovered that the kai2 mutants exhibited hypersensitivity to high-temperature stress relative to WT plants, which might be associated with a more highly increased leaf surface temperature and cell membrane damage in kai2 mutant plants. Next, we performed comparative transcriptome analysis of kai2_C, kai2_H6, kai2_H24, WT_C, WT_H6 and WT_H24 to identify transcriptome differences between WT and kai2 mutants in response to heat stress. K-mean clustering of normalized gene expression separated the investigated genotypes into three clusters based on heat-treated and non-treated control conditions. Within each cluster, the kai2 mutants were separated from WT plants, implying that kai2 mutants exhibited distinct transcriptome profiles relative to WT plants. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses showed a repression in 'misfolded protein binding', 'heat shock protein binding', 'unfolded protein binding' and 'protein processing in endoplasmic reticulum' pathways, which was consistent with the downregulation of several genes encoding heat shock proteins and heat shock transcription factors in the kai2 mutant versus WT plants under control and heat stress conditions. Our findings suggest that chemical or genetic manipulation of KAI2 signaling may provide a novel way to improve heat tolerance in plants.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Termotolerancia , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Hidrolasas/genética , Hidrolasas/metabolismo , Respuesta al Choque Térmico/genética , Proteínas Portadoras/metabolismo , Regulación de la Expresión Génica de las Plantas
4.
Front Plant Sci ; 13: 886862, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36061773

RESUMEN

Salinity is a global conundrum that negatively affects various biometrics of agricultural crops. Jasmonic acid (JA) is a phytohormone that reinforces multilayered defense strategies against abiotic stress, including salinity. This study investigated the effect of JA (60 µM) on two wheat cultivars, namely ZM9 and YM25, exposed to NaCl (14.50 dSm-1) during two consecutive growing seasons. Morphologically, plants primed with JA enhanced the vegetative growth and yield components. The improvement of growth by JA priming is associated with increased photosynthetic pigments, stomatal conductance, intercellular CO2, maximal photosystem II efficiency, and transpiration rate of the stressed plants. Furthermore, wheat cultivars primed with JA showed a reduction in the swelling of the chloroplast, recovery of the disintegrated thylakoids grana, and increased plastoglobuli numbers compared to saline-treated plants. JA prevented dehydration of leaves by increasing relative water content and water use efficiency via reducing water and osmotic potential using proline as an osmoticum. There was a reduction in sodium (Na+) and increased potassium (K+) contents, indicating a significant role of JA priming in ionic homeostasis, which was associated with induction of the transporters, viz., SOS1, NHX2, and HVP1. Exogenously applied JA mitigated the inhibitory effect of salt stress in plants by increasing the endogenous levels of cytokinins and indole acetic acid, and reducing the abscisic acid (ABA) contents. In addition, the oxidative stress caused by increasing hydrogen peroxide in salt-stressed plants was restrained by JA, which was associated with increased α-tocopherol, phenolics, and flavonoids levels and triggered the activities of superoxide dismutase and ascorbate peroxidase activity. This increase in phenolics and flavonoids could be explained by the induction of phenylalanine ammonia-lyase activity. The results suggest that JA plays a key role at the morphological, biochemical, and genetic levels of stressed and non-stressed wheat plants which is reflected in yield attributes. Hierarchical cluster analysis and principal component analyses showed that salt sensitivity was associated with the increments of Na+, hydrogen peroxide, and ABA contents. The regulatory role of JA under salinity stress was interlinked with increased JA level which consequentially improved ion transporting, osmoregulation, and antioxidant defense.

5.
Pharmaceutics ; 13(5)2021 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-34068285

RESUMEN

The main objective of the present study was to assess the effects of sulfur (S) nutrition on plant growth, overall quality, secondary metabolites, and antibacterial and radical scavenging activities of hydroponically grown lettuce cultivars. Three lettuce cultivars, namely, Pazmanea RZ (green butterhead, V1), Hawking RZ (green multi-leaf lettuce, V2), and Barlach RZ (red multi-leaf, V3) were subjected to two S-treatments in the form of magnesium sulfate (+S) or magnesium chloride (-S). Significant differences were observed under -S treatments, especially among V1 and V2 lettuce cultivars. These responses were reflected in the yield, levels of macro- and micro-nutrients, water-soluble sugars, and free inorganic anions. In comparison with the green cultivars (V1 and V2), the red-V3 cultivar revealed a greater acclimation to S starvation, as evidenced by relative higher plant growth. In contrast, the green cultivars showed higher capabilities in production and superior quality attributes under +S condition. As for secondary metabolites, sixteen compounds (e.g., sesquiterpene lactones, caffeoyl derivatives, caffeic acid hexose, 5-caffeoylquinic acid (5-OCQA), quercetin and luteolin glucoside derivatives) were annotated in all three cultivars with the aid of HPLC-DAD-MS-based untargeted metabolomics. Sesquiterpene lactone lactucin and anthocyanin cyanidin 3-O-galactoside were only detected in V1 and V3 cultivars, respectively. Based on the analyses, the V3 cultivar was the most potent radical scavenger, while V1 and V2 cultivars exhibited antibacterial activity against Staphylococcus aureus in response to S provision. Our study emphasizes the critical role of S nutrition in plant growth, acclimation, and nutritional quality. The judicious-S application can be adopted as a promising antimicrobial prototype for medical applications.

6.
Molecules ; 25(24)2020 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-33322081

RESUMEN

Selenium (Se) is an essential trace element, which represents an integral part of glutathione peroxidase and other selenoproteins involved in the protection of cells against oxidative damage. Selenomethionine (SeMet), selenocysteine (SeCys), and methylselenocysteine (MeSeCys) are the forms of Se that occur in living systems. Se-containing compounds have been found to reduce carcinogenesis of animal models, and dietary supplemental Se might decrease cancer risk. Se is mainly taken up by plant roots in the form of selenate via high-affinity sulfate transporters. Consequently, owing to the chemical similarity between Se and sulfur (S), the availability of S plays a key role in Se accumulation owing to competition effects in absorption, translocation, and assimilation. Moreover, naturally occurring S-containing compounds have proven to exhibit anticancer potential, in addition to other bioactivities. Therefore, it is important to understand the interaction between Se and S, which depends on Se/S ratio in the plant or/and in the growth medium. Brassicaceae (also known as cabbage or mustard family) is an important family of flowering plants that are grown worldwide and have a vital role in agriculture and populations' health. In this review we discuss the distribution and further interactions between S and Se in Brassicaceae and provide several examples of Se or Se/S biofortifications' experiments in brassica vegetables that induced the chemopreventive effects of these crops by enhancing the production of Se- or/and S-containing natural compounds. Extensive further research is required to understand Se/S uptake, translocation, and assimilation and to investigate their potential role in producing anticancer drugs.


Asunto(s)
Anticarcinógenos/química , Anticarcinógenos/farmacología , Brassicaceae/química , Quimioprevención , Extractos Vegetales/química , Extractos Vegetales/farmacología , Selenio/química , Azufre/química , Animales , Humanos , Compuestos de Selenio/química , Compuestos de Selenio/farmacología , Relación Estructura-Actividad , Compuestos de Azufre/química , Compuestos de Azufre/farmacología , Verduras
7.
Plant Sci ; 289: 110249, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31623782

RESUMEN

The main objective of the present study was to characterize the symbiotic N2 fixation (SNF) capacity and to elucidate the underlying mechanisms for low-Pi acclimation in soybean plants grown in association with two Bradyrhizobium diazoefficiens strains which differ in SNF capacity (USDA110 vs. CB1809). In comparison with the USDA110-soybean, the CB1809-soybean association revealed a greater SNF capacity in response to Pi starvation, as evidenced by relative higher plant growth and higher expression levels of the nifHDK genes. This enhanced Pi acclimation was partially related to the efficient utilization to the overall carbon (C) budget of symbiosis in the CB1809-induced nodules compared with that of the USDA110-induced nodules under low-Pi provision. In contrast, the USDA110-induced nodules favored other metabolic acclimation mechanisms that expend substantial C cost, and consequently cause negative implications on nodule C expenditure during low-Pi conditions. Fatty acids, phytosterols and secondary metabolites are characterized among the metabolic pathways involved in nodule acclimation under Pi starvation. While USDA110-soybean association performed better under Pi sufficiency, it is very likely that the CB1809-soybean association is better acclimatized to cope with Pi deficiency owing to the more effective functional plasticity and lower C cost associated with these nodular metabolic arrangements.


Asunto(s)
Bradyrhizobium/fisiología , Glycine max/metabolismo , Fijación del Nitrógeno , Fosfatos/deficiencia , Nódulos de las Raíces de las Plantas/metabolismo , Simbiosis , Nódulos de las Raíces de las Plantas/microbiología , Glycine max/microbiología
8.
Front Plant Sci ; 8: 2111, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29312379

RESUMEN

Water deficit and phosphate (Pi) deficiency adversely affect growth and biological nitrogen fixation (BNF) of legume crops. In this study, we examined the impact of interaction between soil water conditions and available soil-Pi levels on growth, nodule development and BNF potential of nine cowpea varieties grown on dry savanna soils. In our experimental design, soils with different available soil-Pi levels, i.e., low, moderate, and high soil-Pi levels, collected from various farming fields were used to grow nine cowpea varieties under well-watered and water-deficit conditions. Significant and severe water deficit-damaging effects on BNF, nodulation, growth, levels of plant-nitrogen (N) and -phosphorus (P), as well as shoot relative water content and chlorophyll content of cowpea plants were observed. Under well-watered and high available soil-Pi conditions, cowpea varieties IT07K-304-9 and Dan'Ila exhibited significantly higher BNF potential and dry biomass, as well as plant-N and -P contents compared with other tested ones. Significant genotypic variations among the cowpeas were recorded under low available soil-Pi and water-deficit conditions in terms of the BNF potential. Principal component (PC) analysis revealed that varieties IT04K-339-1, IT07K-188-49, IT07K-304-9, and IT04K-405-5 were associated with PC1, which was better explained by performance for nodulation, plant biomass, plant-N, plant-P, and BNF potential under the combined stress of water deficit and Pi deficiency, thereby offering prospects for development of varieties with high growth and BNF traits that are adaptive to such stress conditions in the region. On another hand, variety Dan'Ila was significantly related to PC2 that was highly explained by the plant shoot/root ratio and chlorophyll content, suggesting the existence of physiological and morphological adjustments to cope with water deficit and Pi deficiency for this particular variety. Additionally, increases in soil-Pi availability led to significant reductions of water-deficit damage on dry biomass, plant-N and -P contents, and BNF potential of cowpea varieties. This finding suggests that integrated nutrient management strategies that allow farmers to access to Pi-based fertilizers may help reduce the damage of adverse water deficit and Pi deficiency caused to cowpea crop in the regions, where soils are predominantly Pi-deficient and drought-prone.

9.
Proc Natl Acad Sci U S A ; 113(32): E4610-9, 2016 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-27450089

RESUMEN

Low inorganic phosphate (Pi) availability is a major constraint for efficient nitrogen fixation in legumes, including chickpea. To elucidate the mechanisms involved in nodule acclimation to low Pi availability, two Mesorhizobium-chickpea associations exhibiting differential symbiotic performances, Mesorhizobium ciceri CP-31 (McCP-31)-chickpea and Mesorhizobium mediterranum SWRI9 (MmSWRI9)-chickpea, were comprehensively studied under both control and low Pi conditions. MmSWRI9-chickpea showed a lower symbiotic efficiency under low Pi availability than McCP-31-chickpea as evidenced by reduced growth parameters and down-regulation of nifD and nifK These differences can be attributed to decline in Pi level in MmSWRI9-induced nodules under low Pi stress, which coincided with up-regulation of several key Pi starvation-responsive genes, and accumulation of asparagine in nodules and the levels of identified amino acids in Pi-deficient leaves of MmSWRI9-inoculated plants exceeding the shoot nitrogen requirement during Pi starvation, indicative of nitrogen feedback inhibition. Conversely, Pi levels increased in nodules of Pi-stressed McCP-31-inoculated plants, because these plants evolved various metabolic and biochemical strategies to maintain nodular Pi homeostasis under Pi deficiency. These adaptations involve the activation of alternative pathways of carbon metabolism, enhanced production and exudation of organic acids from roots into the rhizosphere, and the ability to protect nodule metabolism against Pi deficiency-induced oxidative stress. Collectively, the adaptation of symbiotic efficiency under Pi deficiency resulted from highly coordinated processes with an extensive reprogramming of whole-plant metabolism. The findings of this study will enable us to design effective breeding and genetic engineering strategies to enhance symbiotic efficiency in legume crops.


Asunto(s)
Fabaceae/microbiología , Mesorhizobium/fisiología , Fosfatos/metabolismo , Simbiosis , Adaptación Fisiológica , Fabaceae/metabolismo , Fosfatos/deficiencia
10.
Plant Sci ; 239: 36-43, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26398789

RESUMEN

Legumes have a significant role in effective management of fertilizers and improving soil health in sustainable agriculture. Because of the high phosphorus (P) requirements of N2-fixing nodule, P deficiency represents an important constraint for legume crop production, especially in tropical marginal countries. P deficiency is an important constraint for legume crop production, especially in poor soils present in many tropical degraded areas. Unlike nitrogen, mineral P sources are nonrenewable, and high-grade rock phosphates are expected to be depleted in the near future. Accordingly, developing legume cultivars with effective N2 fixation under P-limited conditions could have a profound significance for improving agricultural sustainability. Legumes have evolved strategies at both morphological and physiological levels to adapt to P deficiency. Molecular mechanisms underlying the adaptive strategies to P deficiency have been elucidated in legumes. These include maintenance of the P-homeostasis in nodules as a main adaptive strategy for rhizobia-legume symbiosis under P deficiency. The stabilization of P levels in the symbiotic tissues can be achieved through several mechanisms, including elevated P allocation to nodules, formation of a strong P sink in nodules, direct P acquisition via nodule surface and P remobilization from organic-P containing substances. The detailed biochemical, physiological and molecular understanding will be essential to the advancement of genetic and molecular approaches for enhancement of legume adaptation to P deficiency. In this review, we evaluate recent progress made to gain further and deeper insights into the physiological, biochemical and molecular reprogramming that legumes use to maintain P-homeostasis in nodules during P scarcity.


Asunto(s)
Fabaceae/metabolismo , Fósforo/metabolismo , Nódulos de las Raíces de las Plantas/metabolismo , Homeostasis , Fósforo/deficiencia
11.
Plant J ; 81(4): 637-48, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25640854

RESUMEN

Symbiotic nitrogen fixation is a process of considerable economic, ecological and scientific interest. The central enzyme nitrogenase reduces H(+) alongside N2 , and the evolving H2 allows a continuous and non-invasive in vivo measurement of nitrogenase activity. The objective of this study was to show that an elaborated set-up providing such measurements for periods as long as several weeks will produce specific insight into the nodule activity's dependence on environmental conditions and genotype features. A system was developed that allows the air-proof separation of a root/nodule and a shoot compartment. H2 evolution in the root/nodule compartment can be monitored continuously. Nutrient solution composition, temperature, CO2 concentration and humidity around the shoots can concomitantly be maintained and manipulated. Medicago truncatula plants showed vigorous growth in the system when relying on nitrogen fixation. The set-up was able to provide specific insights into nitrogen fixation. For example, nodule activity depended on the temperature in their surroundings, but not on temperature or light around shoots. Increased temperature around the nodules was able to induce higher nodule activity in darkness versus light around shoots for a period of as long as 8 h. Conditions that affected the N demand of the shoots (ammonium application, Mg or P depletion, super numeric nodules) induced consistent and complex daily rhythms in nodule activity. It was shown that long-term continuous measurements of nodule activity could be useful for revealing special features in mutants and could be of importance when synchronizing nodule harvests for complex analysis of their metabolic status.


Asunto(s)
Medicago truncatula/fisiología , Nitrogenasa/análisis , Nódulos de las Raíces de las Plantas/fisiología , Ritmo Circadiano , Fijación del Nitrógeno , Temperatura
12.
Biomed Res Int ; 2015: 687213, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25685802

RESUMEN

Water deficit is one of the major constraints for soybean production in Vietnam. The soybean breeding research efforts conducted at the Agriculture Genetics Institute (AGI) of Vietnam resulted in the development of promising soybean genotypes, suitable for the drought-stressed areas in Vietnam and other countries. Such a variety, namely, DT2008, was recommended by AGI and widely used throughout the country. The aim of this work was to assess the growth of shoots, roots, and nodules of DT2008 versus Williams 82 (W82) in response to drought and subsequent rehydration in symbiotic association as a means to provide genetic resources for genomic research. Better shoot, root, and nodule growth and development were observed in the cultivar DT2008 under sufficient, water deficit, and recovery conditions. Our results represent a good foundation for further comparison of DT2008 and W82 at molecular levels using high throughput omic technologies, which will provide huge amounts of data, enabling us to understand the genetic network involved in regulation of soybean responses to water deficit and increasing the chances of developing drought-tolerant cultivars.


Asunto(s)
Glycine max/crecimiento & desarrollo , Fijación del Nitrógeno/fisiología , Raíces de Plantas/metabolismo , Brotes de la Planta/metabolismo , Estrés Fisiológico , Simbiosis/fisiología , Sequías , Raíces de Plantas/genética , Brotes de la Planta/genética , Glycine max/genética , Vietnam
13.
PLoS One ; 9(12): e114107, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25479253

RESUMEN

The plant-specific NAC transcription factors (TFs) play important roles in regulation of diverse biological processes, including development, growth, cell division and responses to environmental stimuli. In this study, we identified the members of the NAC TF family of chickpea (Cicer arietinum) and assess their expression profiles during plant development and under dehydration and abscisic acid (ABA) treatments in a systematic manner. Seventy-one CaNAC genes were detected from the chickpea genome, including 8 membrane-bound members of which many might be involved in dehydration responses as judged from published literature. Phylogenetic analysis of the chickpea and well-known stress-related Arabidopsis and rice NACs enabled us to predict several putative stress-related CaNACs. By exploring available transcriptome data, we provided a comprehensive expression atlas of CaNACs in various tissues at different developmental stages. With the highest interest in dehydration responses, we examined the expression of the predicted stress-related and membrane-bound CaNACs in roots and leaves of chickpea seedlings, subjected to well-watered (control), dehydration and ABA treatments, using real-time quantitative PCR (RT-qPCR). Nine-teen of the 23 CaNACs examined were found to be dehydration-responsive in chickpea roots and/or leaves in either ABA-dependent or -independent pathway. Our results have provided a solid foundation for selection of promising tissue-specific and/or dehydration-responsive CaNAC candidates for detailed in planta functional analyses, leading to development of transgenic chickpea varieties with improved productivity under drought.


Asunto(s)
Cicer/genética , Familia de Multigenes/genética , Filogenia , Factores de Transcripción/biosíntesis , Ácido Abscísico/administración & dosificación , Arabidopsis , Cicer/crecimiento & desarrollo , Sequías , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genoma de Planta , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/fisiología , Estrés Fisiológico , Factores de Transcripción/genética
14.
Int J Mol Sci ; 15(11): 19389-93, 2014 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-25347276

RESUMEN

The special issue "Symbiotic Nitrogen Fixation in Legume Nodules: Metabolism and Regulatory Mechanisms" aims to investigate the physiological and biochemical advances in the symbiotic process with an emphasis on nodule establishment, development and functioning. The original research articles included in this issue provide important information regarding novel aspects of nodule metabolism and various regulatory pathways, which could have important future implications. This issue also included one review article that highlights the importance of using legume trees in the production of renewable biofuels.


Asunto(s)
Fabaceae/metabolismo , Fijación del Nitrógeno , Nódulos de las Raíces de las Plantas/metabolismo , Simbiosis
15.
Plant J ; 79(6): 964-80, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24947137

RESUMEN

Drought negatively impacts symbiotic nitrogen fixation (SNF) in Cicer arietinum L. (chickpea), thereby limiting yield potential. Understanding how drought affects chickpea nodulation will enable the development of strategies to biotechnologically engineer chickpea varieties with enhanced SNF under drought conditions. By analyzing carbon and nitrogen metabolism, we studied the mechanisms of physiological adjustment of nitrogen fixation in chickpea plants nodulated with Mesorhizobium ciceri during both drought stress and subsequent recovery. The nitrogenase activity, levels of several key carbon (in nodules) and nitrogen (in both nodules and leaves) metabolites and antioxidant compounds, as well as the activity of related nodule enzymes were examined in M. ciceri-inoculated chickpea plants under early drought stress and subsequent recovery. Results indicated that drought reduced nitrogenase activity, and that this was associated with a reduced expression of the nifK gene. Furthermore, drought stress promoted an accumulation of amino acids, mainly asparagine in nodules (but not in leaves), and caused a cell redox imbalance in nodules. An accumulation of organic acids, especially malate, in nodules, which coincided with the decline of nodulated root respiration, was also observed under drought stress. Taken together, our findings indicate that reduced nitrogenase activity occurring at early stages of drought stress involves, at least, the inhibition of respiration, nitrogen accumulation and an imbalance in cell redox status in nodules. The results of this study demonstrate the potential that the genetic engineering-based improvement of SNF efficiency could be applied to reduce the impact of drought on the productivity of chickpea, and perhaps other legume crops.


Asunto(s)
Carbono/metabolismo , Cicer/fisiología , Regulación de la Expresión Génica de las Plantas , Mesorhizobium/fisiología , Nitrógeno/metabolismo , Agua/fisiología , Respiración de la Célula , Cicer/genética , Cicer/microbiología , Sequías , Malatos/metabolismo , Modelos Biológicos , Fijación del Nitrógeno , Nitrogenasa/genética , Nitrogenasa/metabolismo , Oxidación-Reducción , Estrés Oxidativo , Hojas de la Planta/genética , Hojas de la Planta/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/fisiología , Nódulos de las Raíces de las Plantas/genética , Nódulos de las Raíces de las Plantas/fisiología , Simbiosis
16.
Int J Mol Sci ; 15(4): 6031-45, 2014 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-24727372

RESUMEN

Legumes match the nodule number to the N demand of the plant. When a mutation in the regulatory mechanism deprives the plant of that ability, an excessive number of nodules are formed. These mutants show low productivity in the fields, mainly due to the high carbon burden caused through the necessity to supply numerous nodules. The objective of this study was to clarify whether through optimal conditions for growth and CO2 assimilation a higher nodule activity of a supernodulating mutant of Medicago truncatula (M. truncatula) can be induced. Several experimental approaches reveal that under the conditions of our experiments, the nitrogen fixation of the supernodulating mutant, designated as sunn (super numeric nodules), was not limited by photosynthesis. Higher specific nitrogen fixation activity could not be induced through short- or long-term increases in CO2 assimilation around shoots. Furthermore, a whole plant P depletion induced a decline in nitrogen fixation, however this decline did not occur significantly earlier in sunn plants, nor was it more intense compared to the wild-type. However, a distinctly different pattern of nitrogen fixation during the day/night cycles of the experiment indicates that the control of N2 fixing activity of the large number of nodules is an additional problem for the productivity of supernodulating mutants.


Asunto(s)
Medicago truncatula/metabolismo , Dióxido de Carbono/química , Dióxido de Carbono/metabolismo , Medicago truncatula/crecimiento & desarrollo , Nitrógeno/química , Nitrógeno/metabolismo , Fijación del Nitrógeno , Fósforo/química , Fósforo/metabolismo , Fotosíntesis , Brotes de la Planta/metabolismo , Nódulos de las Raíces de las Plantas/metabolismo
17.
J Plant Physiol ; 171(6): 407-10, 2014 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-24594392

RESUMEN

The aim of the present study was to test the hypothesis that the higher nodule amino acid content induced under certain treatments may play a role in the N-feedback regulation of nitrogenase (EC 1.18.6.1) activity by restricting the carbon supply to the functioning nodules. Growing Medicago truncatula plants under sub-optimal phosphorus conditions or upon exposure to large supply of nitrate caused significant asparagine accumulation in nodules of the treated plants. In addition, there was a remarkable decline in the nodule succinate content under phosphorus deprivation while malate was tended to increase. Interestingly, the relative share of succinate in the symbiotic tissues was totally inhibited, i.e. reached zero, by excessive nitrate application. These results provide evidence that succinate might be greatly affected by asparagine content of the nodule fraction, thereby restricting cellular carbon supply to the functioning bacteroids which leads to down-regulation of nodule metabolism and nitrogenase activity.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Medicago truncatula/fisiología , Nitratos/metabolismo , Nitrogenasa/metabolismo , Fósforo/metabolismo , Sinorhizobium meliloti/fisiología , Asparagina/metabolismo , Carbono/metabolismo , Regulación hacia Abajo , Retroalimentación Fisiológica , Hidroponía , Medicago truncatula/enzimología , Medicago truncatula/microbiología , Modelos Biológicos , Nitrógeno/metabolismo , Fijación del Nitrógeno , Floema/enzimología , Floema/microbiología , Floema/fisiología , Raíces de Plantas/enzimología , Raíces de Plantas/microbiología , Raíces de Plantas/fisiología , Brotes de la Planta/enzimología , Brotes de la Planta/microbiología , Brotes de la Planta/fisiología , Nódulos de las Raíces de las Plantas , Ácido Succínico/metabolismo , Simbiosis
18.
Plant Biotechnol J ; 12(3): 387-97, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24267445

RESUMEN

Chickpea (Cicer arietinum) is an important pulse crop in many countries in the world. The symbioses between chickpea and Mesorhizobia, which fix N2 inside the root nodules, are of particular importance for chickpea's productivity. With the aim of enhancing symbiotic efficiency in chickpea, we compared the symbiotic efficiency of C-15, Ch-191 and CP-36 strains of Mesorhizobium ciceri in association with the local elite chickpea cultivar 'Bivanij' as well as studied the mechanism underlying the improvement of N2 fixation efficiency. Our data revealed that C-15 strain manifested the most efficient N2 fixation in comparison with Ch-191 or CP-36. This finding was supported by higher plant productivity and expression levels of the nifHDK genes in C-15 nodules. Nodule specific activity was significantly higher in C-15 combination, partially as a result of higher electron allocation to N2 versus H⁺. Interestingly, a striking difference in nodule carbon and nitrogen composition was observed. Sucrose cleavage enzymes displayed comparatively lower activity in nodules established by either Ch-191 or CP-36. Organic acid formation, particularly that of malate, was remarkably higher in nodules induced by C-15 strain. As a result, the best symbiotic efficiency observed with C-15-induced nodules was reflected in a higher concentration of the total and several major amino metabolites, namely asparagine, glutamine, glutamate and aspartate. Collectively, our findings demonstrated that the improved efficiency in chickpea symbiotic system, established with C-15, was associated with the enhanced capacity of organic acid formation and the activities of the key enzymes connected to the nodule carbon and nitrogen metabolism.


Asunto(s)
Cicer/metabolismo , Mesorhizobium/fisiología , Fijación del Nitrógeno , Nitrógeno/metabolismo , Simbiosis , Biomasa , Carbono/metabolismo , Cicer/enzimología , Cicer/microbiología , Malatos/metabolismo , Mesorhizobium/enzimología , Modelos Biológicos , Nitrogenasa/metabolismo , Raíces de Plantas/enzimología , Raíces de Plantas/metabolismo , Raíces de Plantas/microbiología , Brotes de la Planta/enzimología , Brotes de la Planta/metabolismo , Brotes de la Planta/microbiología , Nódulos de las Raíces de las Plantas/enzimología , Nódulos de las Raíces de las Plantas/metabolismo , Nódulos de las Raíces de las Plantas/microbiología , Especificidad de la Especie , Sacarosa/metabolismo
19.
DNA Res ; 20(5): 511-24, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23810914

RESUMEN

In plants, the auxin response factor (ARF) transcription factors play important roles in regulating diverse biological processes, including development, growth, cell division and responses to environmental stimuli. An exhaustive search of soybean genome revealed 51 GmARFs, many of which were formed by genome duplications. The typical GmARFs (43 members) contain a DNA-binding domain, an ARF domain and an auxin/indole acetic acid (AUX/IAA) dimerization domain, whereas the remaining eight members lack the dimerization domain. Phylogenetic analysis of the ARFs from soybean and Arabidopsis revealed both similarity and divergence between the two ARF families, as well as enabled us to predict the functions of the GmARFs. Using quantitative real-time polymerase chain reaction (qRT-PCR) and available soybean Affymetrix array and Illumina transcriptome sequence data, a comprehensive expression atlas of GmARF genes was obtained in various organs and tissues, providing useful information about their involvement in defining the precise nature of individual tissues. Furthermore, expression profiling using qRT-PCR and microarray data revealed many water stress-responsive GmARFs in soybean, albeit with different patterns depending on types of tissues and/or developmental stages. Our systematic analysis has identified excellent tissue-specific and/or stress-responsive candidate GmARF genes for in-depth in planta functional analyses, which would lead to potential applications in the development of genetically modified soybean cultivars with enhanced drought tolerance.


Asunto(s)
Adaptación Fisiológica , Genoma de Planta , Glycine max/genética , Ácidos Indolacéticos , Estrés Fisiológico , Agua , Cromosomas de las Plantas , Sequías , Filogenia , Reacción en Cadena de la Polimerasa , Glycine max/fisiología
20.
J Exp Bot ; 64(10): 2701-12, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23682114

RESUMEN

Medicago truncatula is an important model plant for characterization of P deficiency on leguminous plants at the physiological and molecular levels. Growth optimization of this plant with regard to P supply is the first essential step for elucidation of the role of P in regulation of nodulation. Hence, a study was carried out to address the growth pattern of M. truncatula hydroponically grown at different gradual increases in P levels. The findings revealed that M. truncatula had a narrow P regime, with an optimum P level (12 µM P) which is relatively close to the concentration that induces P toxicity. The accumulated P concentration (2.7 mg g(-1) dry matter), which is normal for other crops and legumes, adversely affected the growth of M. truncatula plants. Under P deficiency, M. truncatula showed a higher symbiotic efficiency with Sinorhizobium meliloti 2011 in comparison with S. meliloti 102F51, partially as a result of higher electron allocation to N2 versus H(+). The total composition of free amino acids in the phloem was significantly affected by P deprivation. This pattern was found to be almost exclusively the result of the increase in the asparagine level, suggesting that asparagine might be the shoot-derived signal that translocates to the nodules and exerts the down-regulation of nitrogenase activity. Additionally, P deprivation was found to have a strong influence on the contents of the nodule carbon metabolites. While levels of sucrose and succinate tended to decrease, a higher accumulation of malate was observed. These findings have provided evidence that N2 fixation of M. truncatula is mediated through an N feedback mechanism which is closely related to nodule carbon metabolism.


Asunto(s)
Medicago truncatula/crecimiento & desarrollo , Medicago truncatula/metabolismo , Fósforo/metabolismo , Nodulación de la Raíz de la Planta , Sinorhizobium meliloti/fisiología , Simbiosis , Medicago truncatula/microbiología , Fijación del Nitrógeno , Nódulos de las Raíces de las Plantas/crecimiento & desarrollo , Nódulos de las Raíces de las Plantas/metabolismo , Nódulos de las Raíces de las Plantas/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...